반응형
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main script to run pose classification and pose estimation."""
import argparse
import logging
import sys
import time
import cv2
from ml import Classifier
from ml import Movenet
from ml import MoveNetMultiPose
from ml import Posenet
import utils
def run(estimation_model: str, tracker_type: str, classification_model: str,
label_file: str, camera_id: int, width: int, height: int) -> None:
"""Continuously run inference on images acquired from the camera.
Args:
estimation_model: Name of the TFLite pose estimation model.
tracker_type: Type of Tracker('keypoint' or 'bounding_box').
classification_model: Name of the TFLite pose classification model.
(Optional)
label_file: Path to the label file for the pose classification model. Class
names are listed one name per line, in the same order as in the
classification model output. See an example in the yoga_labels.txt file.
camera_id: The camera id to be passed to OpenCV.
width: The width of the frame captured from the camera.
height: The height of the frame captured from the camera.
"""
# Notify users that tracker is only enabled for MoveNet MultiPose model.
if tracker_type and (estimation_model != 'movenet_multipose'):
logging.warning(
'No tracker will be used as tracker can only be enabled for '
'MoveNet MultiPose model.')
# Initialize the pose estimator selected.
if estimation_model in ['movenet_lightning', 'movenet_thunder']:
pose_detector = Movenet(estimation_model)
elif estimation_model == 'posenet':
pose_detector = Posenet(estimation_model)
elif estimation_model == 'movenet_multipose':
pose_detector = MoveNetMultiPose(estimation_model, tracker_type)
else:
sys.exit('ERROR: Model is not supported.')
# Variables to calculate FPS
counter, fps = 0, 0
start_time = time.time()
# Start capturing video input from the camera
cap = cv2.VideoCapture(camera_id)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
# Visualization parameters
row_size = 20 # pixels
left_margin = 24 # pixels
text_color = (0, 0, 255) # red
font_size = 1
font_thickness = 1
classification_results_to_show = 3
fps_avg_frame_count = 10
keypoint_detection_threshold_for_classifier = 0.1
classifier = None
# Initialize the classification model
if classification_model:
classifier = Classifier(classification_model, label_file)
classification_results_to_show = min(classification_results_to_show,
len(classifier.pose_class_names))
# Continuously capture images from the camera and run inference
while cap.isOpened():
success, image = cap.read()
if not success:
sys.exit(
'ERROR: Unable to read from webcam. Please verify your webcam settings.'
)
counter += 1
image = cv2.flip(image, 1)
if estimation_model == 'movenet_multipose':
# Run pose estimation using a MultiPose model.
list_persons = pose_detector.detect(image)
else:
# Run pose estimation using a SinglePose model, and wrap the result in an
# array.
list_persons = [pose_detector.detect(image)]
# Draw keypoints and edges on input image
image = utils.visualize(image, list_persons)
if classifier:
# Check if all keypoints are detected before running the classifier.
# If there's a keypoint below the threshold, show an error.
person = list_persons[0]
min_score = min([keypoint.score for keypoint in person.keypoints])
if min_score < keypoint_detection_threshold_for_classifier:
error_text = 'Some keypoints are not detected.'
text_location = (left_margin, 2 * row_size)
cv2.putText(image, error_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
error_text = 'Make sure the person is fully visible in the camera.'
text_location = (left_margin, 3 * row_size)
cv2.putText(image, error_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
else:
# Run pose classification
prob_list = classifier.classify_pose(person)
# Show classification results on the image
for i in range(classification_results_to_show):
class_name = prob_list[i].label
probability = round(prob_list[i].score, 2)
result_text = class_name + ' (' + str(probability) + ')'
text_location = (left_margin, (i + 2) * row_size)
cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
# Calculate the FPS
if counter % fps_avg_frame_count == 0:
end_time = time.time()
fps = fps_avg_frame_count / (end_time - start_time)
start_time = time.time()
# Show the FPS
fps_text = 'FPS = ' + str(int(fps))
text_location = (left_margin, row_size)
cv2.putText(image, fps_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
# Stop the program if the ESC key is pressed.
if cv2.waitKey(1) == 27:
break
cv2.imshow(estimation_model, image)
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--model',
help='Name of estimation model.',
required=False,
default='movenet_lightning')
parser.add_argument(
'--tracker',
help='Type of tracker to track poses across frames.',
required=False,
default='bounding_box')
parser.add_argument(
'--classifier', help='Name of classification model.', required=False)
parser.add_argument(
'--label_file',
help='Label file for classification.',
required=False,
default='labels.txt')
parser.add_argument(
'--cameraId', help='Id of camera.', required=False, default=0)
parser.add_argument(
'--frameWidth',
help='Width of frame to capture from camera.',
required=False,
default=640)
parser.add_argument(
'--frameHeight',
help='Height of frame to capture from camera.',
required=False,
default=480)
args = parser.parse_args()
run(args.model, args.tracker, args.classifier, args.label_file,
int(args.cameraId), args.frameWidth, args.frameHeight)
if __name__ == '__main__':
main()
CV2
파이썬에서 영상을 처리하기 위해서 cv 라이브러리를 가지고 인풋을 받아주어야 한다.
Import cv2 라는 코드가 에러가 뜬다면 아래와 같이 패키지 설치한다.
pip3 install opencv-python
argparse
파이썬에서 argparse 는 머신러닝 등 파이썬 파일을 cmd 나 터미널 cli (command line interface ) 실행할 때 자주 접한다.
프로그램에 필요한 인자를 사용자 친화적인 명령행 인터페이스로 쉽게 작성하도록 돕는 라이브러리입니다.
import argparse
parser = argparse.ArgumentParser(description = 'Argparse Test ')
# 인자값을 받을 수 있는 인스턴스 생성
parser.add_argument('--model', help='Name of estimation model.',
required=False,default='movenet_lighting')
#인자값 추가
parser.add_argument('--tracker',help='Type of tracker to frame',
required=False,default='bounding_box')
#인자값 추가
args = parser.parse_args()
#parser.add_argument 값 저장
반응형
'Open Project > 텐서플로_사물인식' 카테고리의 다른 글
OpenCV 정리해보자 ( 파이썬 / 라즈베리파이) (0) | 2022.06.03 |
---|---|
OpenCV , 파이썬을 사용해 카메라 영상 출력하기 (0) | 2022.06.03 |
VLC Player, 라즈베리파이에 연결된 카메라를 스마트폰에서 보자 (0) | 2022.06.03 |
라즈베리파이3 , 카메라 연결하여 사물인식 예제 (텐서플로 라이트) (0) | 2022.05.18 |